\qquad
\qquad

8.EE.A. 4 ADDITIONAL PRACTICE

1) Determine both the sum and product of the numbers below. Express your answers in scientific notation in the appropriate box.

$\left(2.8 \cdot 10^{3}\right)$ and $\left(2.5 \cdot 10^{3}\right)$	Sum: $\quad 5.3 \cdot 10^{3}$
	Product: $7 \cdot 10^{6}$

3) Find the product of 5,400 and ($6 \cdot 10^{5}$). Write your answer in scientific notation.
$3.24 \cdot 10^{9}$

For questions 5-8, use this table that compares the approximate populations of three countries in 1980 versus 2020.
5) How many total people lived in the United States and Mexico in 2020? Express your answer in scientific notation.
$4.7 \cdot 10^{8}$
7) How many times greater is Mexico's population in 2020 than it was in 1980? Express your answer in standard form. 2 times greater
9) A cross country coach instructs his team to run for a duration of $5.4 \cdot 10^{6}$ milliseconds for practice one day. Choose a more appropriate unit to represent this duration and convert it to that unit.
Answers may vary: 90 minutes or 1.5 hours
2) What is 6 million subtracted from (9.3 $\cdot 10^{6}$), expressed in scientific notation?
$3.3 \cdot 10^{6}$
4) Determine the quotient below, expressed in scientific notation.

$$
\frac{\left(3.5 \cdot 10^{5}\right)}{\left(7 \cdot 10^{7}\right)}
$$

$5 \cdot 10^{-3}$

Country	Pop. in 1980	Pop. in 2020
United States	$2.27 \cdot 10^{8}$	$3.3 \cdot 10^{8}$
Canada	$2.45 \cdot 10^{7}$	$3.7 \cdot 10^{7}$
Mexico	$7 \cdot 10^{7}$	$1.4 \cdot 10^{8}$

6) How many more people lived in the United States in 2020 compared to 1980? Express your answer in standard form.
103,000,000 more people
7) If each person in Canada in 2020 won $\$ 5,000,000$ from the lottery, how much would the country's total winnings be? Express your answer in scientific notation. $1.85 \cdot 10^{14}$ dollars
8) When a student multiplied 50 million by 300 in her scientific calculator, she got the below result. Express this number in both scientific notation and standard form.
1.5E10
$1.5 \cdot 10^{10} ; 15,000,000,000$
